Numerical Continuation of Hamiltonian Relative Periodic Orbits
نویسندگان
چکیده
The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years there has been rapid progress in the development of a bifurcation theory for dynamical systems with structure, such as symmetry or symplecticity. But as yet there are few results on the numerical computation of those bifurcations. The methods we present in this paper are a first step towards a systematic numerical analysis of generic bifurcations of Hamiltonian symmetric periodic orbits and relative periodic orbits (RPOs). First we show how to numerically exploit spatio-temporal symmetries of Hamiltonian periodic orbits. Then we describe a general method for the numerical computation of RPOs persisting from periodic orbits in a symmetry breaking bifurcation. Finally we present an algorithm for the numerical continuation of non-degenerate Hamiltonian relative periodic orbits with regular drift-momentum pair. Our pathfollowing algorithm is based on a multiple shooting algorithm for the numerical computation of periodic orbits via an adaptive Poincaré section and a tangential continuation method with implicit reparametrization. We apply our methods to continue the famous Figure Eight choreography of the three-body system. We find a relative period doubling bifurcation of the planar rotating Eight family and compute the rotating choreographies bifurcating from it. AMS subject classification. 37G15, 37J20, 37M20, 70H33
منابع مشابه
Numerical continuation of families of heteroclinic connections between periodic orbits in a Hamiltonian system
This paper is devoted to the numerical computation and continuation of families of heteroclinic connections between hyperbolic periodic orbits of a Hamiltonian system. We describe a method that requires the numerical continuation of a nonlinear system that involves the initial conditions of the two periodic orbits, the linear approximations of the corresponding manifolds and a point in a given ...
متن کاملComputation of Homoclinic Solutions to Periodic Orbits in a Reduced Water-wave Problem
This paper concerns homoclinic solutions to periodic orbits in a fourth-order Hamiltonian system arising from a reduction of the classical water-wave problem in the presence of surface tension. These solutions correspond to travelling solitary waves which converge to non-decaying ripples at innnity. An analytical result of Amick and Toland, showing the existence of such homoclinic orbits to sma...
متن کاملGlobal pathfollowing of homoclinic orbits in two-parameter ows
The main goal of this paper is a global continuation theorem for homoclinic solutions of autonomous ordinary di erential equations with two real parameters. In one-parameter ows, Hopf bifurcation serves as a starting point for global paths of periodic orbits. B-points, alias Arnol'd-Bogdanov-Takens points, play an analogous role for paths of homoclinic orbits in two-parameter ows. In fact, a pa...
متن کاملPeriodic Orbits of Hamiltonian Systems
5 The Variational principles and periodic orbits 21 5.1 Lagrangian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Hamiltonian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 Fixed energy problem, the Hill’s region . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Continuation of periodic orbits as critical p...
متن کاملNumerical Bifurcation of Hamiltonian Relative Periodic Orbits
Relative periodic orbits (RPOs) are ubiquitous in symmetric Hamiltonian systems and occur for example in celestial mechanices, molecular dynamics and rigid body motion. RPOs are solutions which are periodic orbits of the symmetry-reduced system. In this paper we analyze certain symmetry-breaking bifurcations of Hamiltonian relative periodic orbits and show how they can be detected and computed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 18 شماره
صفحات -
تاریخ انتشار 2008